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1. EXECUTIVE SUMMARY

Climate assessment reports, such as the Intergovernmental Panel on Climate Change’s 5th assesment report
[IPCC AR5; IPCC et al., 2014] or the United States National Climate Assessment [U.S. Global Change
Research Program, 2014], increasingly rely on many-ensemble climate projections from fully-coupled
Earth system models (ESM) to asses possible future climate states. ESM participate in a large set of
Coupled Model Intercomparson Projects (CMIP) to better understand their models and the climate system,
so that they may provide credible climate projections. However, fully participating in these intercomparison
exercises represents an extremely large computational personnel burden for modeling centers [Eyring et al.,
2016, Williams et al., 2016a]. However, there has been little attention within the climate modeling
community paid to the in situ performance of ESMs up until now. Recently a computational performance
model intercomparison project (CPMIP) for CMIP6 has begun [Balaji et al., 2017], but there has not yet
been an effort to gather, process, and analyze the historical performance data that has been saved within
archived log files from previous modeling efforts, nor the development of performance analysis system
capable of providing detailed statistical analyses or visualizations of this performance data.

Therefore, we’ve begun a joint effort to analyze the historical and current performance data on both GFDL
and OLCF modeling systems. We have developed a preliminary performance analysis system to captue,
analyize, and visualize end-to-end in situ performance data and applied it to NOAA/GFDL’s
post-processing system. Through the course of the project a number of performance improvements have
been made, with the steps necessary to handle the expected volume of data (Big Data) likely to come out of
the CMIP6 exercises (TB to PB) provided. We have also begun developing a statistical workload model
that will allow modeling centers to determined their expected scientific throughput in the context of
expected resource (computational and personnel) availability and accounting for typical workflow
disruptions. This will allow them to develop a CMIP participation strategy and maximize their level of
participation in the exercises.

We expect this infrastructure, and the data it produces, to ultimately allow us to identify performance issues
and workflow errors that exist across Earth system modeling centers, and possibly HPC modeling centers
in general. Center-independent solutions to workflow or performance issues would help alleviate the
computational burden for CMIP6+ modeling projects and should realize both labor and cost savings
benefits throughout the CMIP community.
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2. INTRODUCTION

Prediction of future climate states, such as for the IPCC Assessment Reports [IPCC et al., 2014] or the U.S.
National Climate Assessment [U.S. Global Change Research Program, 2014], relies on the many ensembles
of climate projections provided by fully-coupled Earth system models (e.g., E3SM, CESM, etc.). In order
to provide credible projections, Earth system modeling centers around the world participate in a large set of
Coupled Model Intercomparison Projects (CMIP) to better understand how the range models respond to
changes in radiative forcing, to investigate the sources and consequences of model bias, and to understand
the variability of the climate system [Eyring et al., 2016]. These kind of intercomparisons are most
effective when there is wide active participation from the entire ESM community, however, because ESMs
are (ever increasingly) complex and run at (ever increasingly) high resolution to provide the “best”
projections, fully participating in these intercompairisons represents an extremely large computational
burden for modeling centers [Eyring et al., 2016, Williams et al., 2016a].

For example, CMIP3 provided 36 TB of data for IPCC AR4 and each modelling group submitted on
average 1750 years of model output, yet for CMIP5, the core experiments alone required 2300 years of
model output and the data archive is estimated to exceed 3 PB of of data [Taylor et al., 2012]. Although
CMIP6 recognized this large burden, it is still expected to provide over 50 PB of data [Williams et al.,
2016b] and require a minimum of ≈ 1000 simulated years to participate in the required core exercises, let
alone all 21 endorsed model intercomparison exercises [Eyring et al., 2016]. Since current ESMs range
from ≈ 103 to ≈ 105 core-hours per simulated year during scientific application [Balaji et al., 2017],
minimally participating in CMIP6 will require ≈ ×107 core-hours, all but requiring the use of
high-performance computers at Leadership Computing Facilities (e.g., Titan at the Oak Ridge Computing
Facility (OLCF)).

Further complicating participation in these projects is the intersection of HPC system turnover and these
CMIP exercises. In the U.S., 3 major HPC systems are transitioning to a new system during CMIP6, and
will likely see the development of 3 more systems during CMIP7 ∗. Because the transition between these
machines represent a substantial amount of time and effort for both verification and performance tuning,
they will likely represent a significant barrier to scientific throughput even though these centers are
expected to keep their current systems, they experience more performance issues as they age
[Esteban Meneses, 2015, Tiwari et al., 2015]. We can expect this to be common for all large systems at all
computing centers charged with producing state-of-the-art computational science. Incumbent with data
production and processing is the large support required from workflow science and engineering to manage
the simulations and analysis. This support is typically stood-up at every center and can be model
dependent, which multiplies the efforts across all CMIP6 participants, even though much of the supporting
technology is center-independent.

Due to the large computational and personnel resource burden associated with participating in these CMIP
exercises, and the dynamic availability of resources, it is critical that centers develop a coordinated strategy
to meet these participation challenges. Fundamentally, these strategies will center around optimization of
scientific throughput and allocation of expected resources, both of which require a detailed understanding
of the expected end-to-end model performance. Although a computational performance model
intercomparison project (CPMIP) for CMIP6 has begun [Balaji et al., 2017], there has been very little in
situ end-to-end performance data analyzed and published to date. In fact, the preliminary results provided
by Balaji et al. [2017] are the only cross-center performance data analyzed and published (of which we are
aware). Although, much of this data has been collected for internal-use only at both the Oak Ridge

∗https://energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
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Leadership Computing Facility (OLFC) and the National Climate-Computing Research Center (NCRC)
(and likely many others) for years. For example, log files from climate workflows and components are
currently being generated, captured, and saved at the OLCF, NCRC, GFDL (post-processing only),
NERSC and ALCF. However, robust analyses for this performance data have been prevented by the lack of
formal standardization of the output data, the lack of mature processing software to generate the desired
data, and the sheer volume of data that exist.

Therefore, a joint NOAA/GFDL-ORNL effort to gather, process, and analyze both the historical and
current performance data at both OLCF and GFDL has been underway. We have developed a flexible and
efficient performance analysis system that can be applied to the performance data at these centers and will
handle the large volume of data. We are able to generate many descriptive statistics and visualizations key
to investigating a center’s workflow. We present a description of our preliminary performance analysis
system and the results of our initial analysis. Furthermore, we are developing a workload prediction model
which will simulate scientific throughput taking into account in situ performance, resource availability, and
workflow disruptions (e.g., system down-time, system performance degradation, queue backlogs,
etc.).
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3. PROGRESS AND RESULTS

3.1 DATA GATHERING

NOAA/GFDL’s workflow management system, FRE (the FMS Runtime Environment), logs ≈ 1.5 million
lines of text-based output for each simulation, which contains a wide variety of workflow and performance
data including queue dwell time, model run time, allocated nodes, and error messages. These logs are left
in place on the NCRC file system unless a user takes action to delete them, and are world-readable. In
order to gather the historical data, we developed the capability to crawl the file system and generate a list of
log file directories to be analyzed. This is given a low execution priority so it does not disturb current
operations. Note that, due to the size of the file system, it took ≈ one month to span the system, and it
found over 800 GB (40 GB compressed with gzip) of log files.

Through manual examination of a small sample of log files, we determined the overall file structure,
identified variables of interest (e.g., queue times, run times, etc.), and noted how those variables could be
identified. A python module was developed to parses these log files for variables of interest, which are
located in the log files via a regular expression. An associated parsing function is used to pull in the
requested data. This setup allows for variables to be added and removed simply by updating the list of
regular expressions and their associated parsing functions. Using an associated function allows
complicated data (e.g., split across multiple lines) to be handled. As the data is generated, it is stored in an
SQLite database, which allows the parsed data to be easily queried, grouped, and associated. Parsing the
800 GB of log files and inserting them into a database takes several weeks.

Although useful, scalability is required, so we realized a significant performance improvement by hashing
the first 7 characters of the key strings and building a hash set, which was long enough to prevent most
collisions. This is because many of the regular expressions were very simple, so looking for key strings at
the beginning of lines was sufficient. Then these key strings can be compared to the hash set instead of
running the regular expression. In the event of a match, the matched line can be sent to a function for
processing, and in the case of collisions, the function can disambiguate the matched variables. After the
hash-comparison is exhausted, the remaining regular expressions that did not lend themselves to hashing is
checked. This reduces the time to parse the 800 GB of log files by three orders of magnitude, and should
now be scalable to PB of data.

3.2 PERFORMANCE ANALYSES

For NOAA/GFDL’s experiments, a particular configuration of a climate simulation is described as a “case”,
which comprises the numerical methods, model components, model resolution, and initial inputs. A case
is, or cases are, then run multiple times to complete the desired simulations for a particular experiment.
The outputs of these simulations are considered ‘raw’ (not yet in the form needed for scientific analysis)
and will need to be post-processed (e.g., calculation of derived variables, reordering data to produce time
series, providing summary statistics and figures). This post-processing, like the model runs themselves,
requires HPC level infrastructure and in fact both NOAA/GFDL and ORNL have separate systems for
post-processing model results to enable access to more memory and specialized software. We focus on this
class of systems for performance analysis because they also experience ongoing attrition and are
bottlenecks during CMIP6 simulations.

Since post-processing transformations are typically constant within a case and are often repeated (for each
simulation), a very large set of repeated timing data has been generated. This bolsters our statistical
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Table 1: Example descriptive statistics of the post-processing performance for selected cases.

Case N
Diagnostics CHPY

Max Min Mean Std dev.
CM4 (all) 3033 2.083 0.001 0.089 0.028
CM4 historical 226 0.762 0.003 0.041 0.019
CM4.5 (all) 58 1.877 0.003 0.271 0.040

analysis of the post-processing performance. This data is primarily composed of the instance when: a
post-processing job enters the queue, starts processes, and completes processing, not to mention the
substantial amount of data describing the case setup, which is used for classification of our results. Table 1
provides an example of the descriptive statistics that can be produced to understand the general
performance of different cases. Table 2 provides an example of the descriptive statistics that can be
produced for a specific case to better understand the performance of its diagnostic components.

Importantly, descriptive statistics cannot provide a complete description of the data and can be misleading
in even simple datasets [e.g., Anscombe’s quartet; Anscombe, 1973]. Therefore, we also provide many
visualizations of the data to help develop performance insight. For example, in fig. 1, many interesting
features of the data are readily apparent (e.g., gaps in the time series, vertical spikes of increased run times,
outliers, and an apparent shift in the performance around the 2016–2017 rollover), but would get
overlooked by basic descriptive statistics. A root-cause analysis of these interesting features was
performed, and some of the features can be explained by correlated system events. For example, the gaps
in the time series could be caused by reasons including:

• The model was not being run

• Log files may have been moved, hidden, or deleted

• The post-processing job failed

• System failures

In order to determine the cause of the data gaps, we developed a dataset of post-processing system issues.
By comparing the performance data and the system data, we found that the data gap in July 2015, which
was followed by a large spike in processing time, was caused by a tape-system failure. This failure caused
many jobs already in the queue, or entering the queue during the failure, to sit idle until the failure was
resolved. When the tape system resumed normal operation, the post-processing jobs that had been sitting
idle were able to retrieve their required data and finish processing, leading to excessively long run times
logged. However, it took some time to flush out the accumulated backlog of jobs on the system. Thus, the
gap in the data shows the duration of the system downtime and the width of the spike shows the how long it
took the post-processing machine to clear the backlog. These types of downtime events are not uncommon
at HPC centers and will likely impact the overall throughput during a large modeling project, although they
are likely randomly distributed in time. By combining visualization, statistical analysis, and investigation
in an iterative approach, it is our view that a much deeper understanding of performance and expected
throughput will be gained.

3.3 DEVELOPING THE WORKLOAD MODEL

From the post-processing results, we were able to develop three successively more complex mean
performance models (MPM) of NOAA/GFDL’s model. The first and simplest model (MPM1) is to simply
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Table 2: Example descriptive statistics of the post-processing performance for the diagnostic compo-
nents of the CM4 historical case.

Diagnostic N
CHPY

Max Min Mean Std. dev.
1 atmos 10 0.762 0.227 0.330 0.151
2 atmos_diurnal 7 0.048 0.022 0.032 0.008
3 atmos_month_aer 10 0.085 0.020 0.044 0.023
4 atmos_scalar 7 0.017 0.003 0.007 0.004
5 ice 10 0.142 0.026 0.051 0.037
6 land 10 0.521 0.094 0.159 0.123
7 land_cubic 7 0.189 0.149 0.171 0.012
8 land_instant_cubic 7 0.035 0.017 0.022 0.007
9 ocean_5daily 13 0.011 0.003 0.005 0.003
10 ocean_Agulhas_section 2 0.021 0.009 0.015 0.006
11 ocean_Barents_opening 2 0.016 0.007 0.012 0.005
12 ocean_Bering_Strait 2 0.014 0.007 0.011 0.004
13 ocean_Davis_Strait 2 0.015 0.008 0.011 0.003
14 ocean_Denmark_Strait 2 0.018 0.011 0.015 0.003
15 ocean_Drake_Passage 2 0.016 0.008 0.012 0.004
16 ocean_English_Channel 2 0.016 0.008 0.012 0.004
17 ocean_Faroe_Scotland 2 0.016 0.008 0.012 0.004
18 ocean_Florida_Bahamas 2 0.017 0.008 0.012 0.005
19 ocean_Fram_Strait 2 0.015 0.008 0.012 0.004
20 ocean_Gibraltar_Strait 2 0.016 0.008 0.012 0.004
21 Iceland_Faroe_U 2 0.036 0.008 0.022 0.014
22 Iceland_Faroe_V 2 0.024 0.008 0.016 0.008
23 ocean_Iceland_Norway 2 0.020 0.008 0.014 0.006
24 ocean_Indonesian_Throughflow 2 0.036 0.008 0.022 0.014
25 ocean_Mozambique_Channel 2 0.038 0.008 0.023 0.015
26 ocean_Pacific_undercurrent 2 0.018 0.008 0.013 0.005
27 ocean_Taiwan_Luzon 2 0.017 0.008 0.012 0.004
28 ocean_Windward_Passage 2 0.016 0.008 0.012 0.004
29 ocean_annual 10 0.167 0.029 0.063 0.047
30 ocean_annual_z 10 0.120 0.021 0.042 0.033
31 ocean_daily 7 0.042 0.030 0.036 0.004
32 ocean_monthly 10 0.261 0.040 0.077 0.063
33 ocean_scalar_annual 10 0.011 0.004 0.008 0.003
34 ocean_scalar_monthly 10 0.025 0.004 0.014 0.008
35 refineDiag 50 0.183 0.048 0.098 0.027
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Figure 1: Logged run time (job start to job completion) of atmospheric diagnostics over time of a
small group of CM4 cases.

take the total compute time of all the diagnostic components for each of the runs from a particular case, and
then average the runs to find expected run time (te

1). This model, however, doesn’t account for different
configurations within a case which may cause certain components to be turned on and off, or the
distribution of the component costs.

A slightly more complex model (MPM2) takes the average compute time of each individual components
for all the case’s runs, and then adds them together to get the total expected runtime (te

2). This method will
provide a better estimate of te for a case with all components active, but isn’t able to take into account a
particular case configuration or set of them. (Note, MPM2 reduces to MPM1 in the case that there are an
equal number of executions for each component.) However, if the expected configuration(s) of a case are
known, we can use MPM3 to determine te

3, which multiples the average component runtime by an
execution weight, and sums them. For an individual run, the weights will be one for each active
component, or zero for the inactive components. For a distribution of cases, the weights will be number of
times the case is active, divided by the total number of runs (Note: if all components are active, this
reduces to MPM2). Table 3 shows the expected runtime of the CM4 Historical case using each model.
MPM3 produces a significantly shorter expected runtime because many of the diagnostic components are
run infrequently (see Table 2). These estimates can be used determine the total required compute time (tc)
needed for a particular modeling project or intercomparison exercise.
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Table 3: Expected runtime of the CM4 historical case using the three different workload models.

Case
CHPY

te
1 te

2 te
3

CM4 historical 1.435 1.428 0.305





4. NEXT RECOMMENDED STEPS

Our performance analysis system has provided key insights into, and a solid platform for, developing a
robust cross-center performance analysis system. The next step to developing such a system will be to
locate all available historical performance data and finish developing a set of robust parsers for the log files
produced on: NOAA/GFDL’s compute system, ORNL’s compute system (Titan/Summit), and ORNL’s
post-processing system (Rhea). This will provide two independent end-to-end performance datasets, which
will allow investigation into localized performance issues and cross-center performance issues.
Furthermore, this dataset would allow us to produce the CPMIP metrics for historical simulation efforts
(CMIP3-5) allowing for an investigation into performance trends which is not currently possible. A further
important step would be to build the parser into current workflow management systems so that
performance data from every run is automatically stored in a performance database (for each centers, or all
centers).

As such a system is developed and deployed at modeling centers, the SQLite database will quickly grow
very large (TB to PB by ISMIP7), leading to slow inserts, updates, and queries. To alleviate this issue, a
distributed database designed for "Big Data" storage and queries should be stood up (e.g., Spark DB,
Scality). Additionally, our python analysis methods could be adapted to a Big Data processing platform
such as Apache Spark (via PySpark), and a real-time dynamic visualization system with a web interface
could be developed to speed up analysis. We have developed a preliminary example of such a system using
Dash by Plotly, which is a promising candidate even at scale and shown in Figure 2. Importantly, all of the
aforementioned technology is available at ORNL through OLCF and CADES resources.

Figure 2: Screenshot of an interactive visualized of the logged run time (job start to job completion)
of atmospheric diagnostics using Dash by Plotly.

Because an iterative development cycle lends to a more detailed performance analysis, many database
operations will be performed repeatedly and as the database grows and these repeated operations will be
more expensive. To reduce this burden, we’ve devised and tested a preliminary cache layer that can
optionally be turned on and off and is placed between the database and analysis code. The cache layer
saves a hash of any SQL query performed and the results of the query to a JSON file. Then, before any
query is performed, the new query hash is checked against the previous hash set, and if it has already been
performed, the results are loaded directly from its associated JSON file. Because hash look-ups and loading
a JSON file is very efficient, the cache layer can significantly out perform the database. To fully implement
this in production, the cache layer would likely need to be reset according to some rule (e.g., every
database insert or update, at some frequency).
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Furthermore, the workflow models can be significantly improved and expanded on, as the current model
only relies on coarse statistics. A more robust model could actually track the entire workflow including the
queue dynamics across different machines, apply system events at some frequency, and account for the
performance variability that arrises from the assigned processor layout on different machines. A robust
estimation of the cost of a modeling project, in the context of other ongoing projects at the center, could
then be better estimated from this model. The use of statistical methodologies like Monte-Carlo methods
and machine learning algorithms should also be explored for these purposes.
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5. CONCLUSIONS

Though the course of this project, we have developed a preliminary performance analysis system that is
able to gather, process, analyze, and visualize end-to-end modeling performance data. This system has
successfully been applied to NOAA/GFDL’s post-processing system and is ready to be expanded to
NOAA/GFDL’s simulation system, and both ORNL’s simulation and post-processing systems. Because of
the large volume of data expected through the course of CMIP6, we have developed and outlined a number
of methods to harden this system for "Big Data" (TB to PB). Furthermore, the development of a statistical
workload prediction model, which may help modeling centers simulate their expected scientific throughput
by taking into account in situ performance, resource availability, and workflow disruptions, has
begun.

This infrastructure, and the datasets it can produce, will allow us to identify performance variability issues
and workflow errors in large scale climate modeling that exist across these centers, which are likely to exist
within all large compute centers. This will allow for the creation of center-independent solutions to
workflow or performance issues and provide critical information to developing an optimal participation
strategy for CMIP and similar modeling projects. This is expected to realize both labor and cost savings
benefits across all facilities and benefit the wider climate modeling community.
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